Будет построена первая промышленная термоядерная электростанция


1 000
Не позднее
9 августа 2036
прогноз сбудется
Техника и наука
Над этим работают ученые всего мира. По различным оценкам, 20 лет для выхода на результат должно хватить.
68%
32%
(+1)
(+1)

Сводная информация по прогнозу Редактировать сводную информацию

Когда заработает первая промышленная термоядерная электростанция? Сообщения СМИ, аргументы в пользу и против прогноза

04 декабря 2018 - Одним из самых перспективных подходов к ядерной энергетике является тип реактора, называемый токамак — он использует мощные магнитные поля для улавливания сверхнагретой плазмы внутри камеры в форме тора (проще говоря — полого бублика). Одним из основных препятствий при разработке токамака является тот факт, что плазма разогревается до колоссальных температур, доходящих до миллионов градусов Цельсия. Такого нагрева, к примеру, достигает корона Солнца. 

04 декабря 2018 - Физики из Великобритании объявили о том, что нашли способ охладить раскаленную до миллиона градусов плазму с помощью специальной установки. С ее помощью ученые надеются запустить первый реактор термоядерного синтеза уже к 2025 году. Новая система, разработанная инженерами и физиками-ядерщиками, использует проверенную временем методику: она увеличивает путь, который плазма проходит по токамаку, тем самым значительно охлаждая ее. После этого плазма вступает в контакт в так называемой «жертвенной стеной» — специальным блоком, состав которого пока не разглашается. Известно лишь то, он постепенно разрушается под воздействием высоких температур, так что каждые несколько лет его придется заменять. Исследователи надеются на то, что первое испытание новой системы пройдет на экспериментальном реакторе ITER во Франции. Международная команда, работающая над постройкой реактора (запуск которого запланирован на 2025 год) надеется, что это будет первый в истории реактор, производящий чистую энергию — что станет первым шагом к электростанциям, работающим на энергии термоядерного синтеза. https://www.popmech.ru/science/news-452202-uchenye-obuzdali-energiyu-ter...

14 ноября 2018 - С помощью экспериментального продвинутого сверхпроводящего токамака (EAST), который называют китайским «искусственным солнцем», физики смогли разогреть плазму до 100 миллионов градусов Цельсия (что в 6 раз выше температуры ядра нашей звезды) и достигнуть мощности нагрева в 10 МВт. Эксперимент проводился с помощью первого в мире сверхпроводящего токамака с некруглым поперечным сечением. Его разработкой и сборкой занимались ученые из Института физики плазмы при Академии наук Китая. В опубликованном пресс-релизе института говорится, что полученные результаты оказались близки к удовлетворению физических условий, необходимых для создания будущего стационарного термоядерного реактора. Полученные в ходе испытаний параметры также важны для строительства проекта китайского экспериментального реактора термоядерного синтеза (CFETR).   http://english.hf.cas.cn/new/news/rn/201811/t20181113_201186.html

21 сентября 2018 - Специалисты Института ядерной физики (ИЯФ СО РАН) произвели физический пуск мощного высоковольтного инжектора с уникальными характеристиками для нагрева термоядерной плазмы, сообщает институт в четверг. В учреждении пояснили, что эта экспериментальная установка была разработана и изготовлена по заказу американской компании ТАЕ Technologies, которая занимается созданием безнейтронного термоядерного реактора. С помощью этого инжектора ученые планируют отработать технологию нагрева плазмы в реакторе ТАЕ Technologies. "Ранее в ИЯФ СО РАН был разработан и испытан прототип подобного инжектора (мощного, для нагрева плазмы в установках нового поколения – ред.), который хорошо зарекомендовал себя на стендовых испытаниях. Был получен интенсивный пучок отрицательных ионов с энергией 117 килоэлектронвольт (кэВ). Также были проведены эксперименты по транспортировке пучка в реактор. Теперь начинается систематическая работа на инжекторе с существенно большей энергией частиц. На сегодняшний день в мире не существует инжекторов для нагрева плазмы с подобными характеристиками", — приводятся в сообщении слова главного научного сотрудника ИЯФ СО РАН Юрия Бельченко. ИЯФ СО РАН является мировым лидером по разработке и изготовлению инжекторов атомарных пучков для термоядерных исследований. Институт поставляет их в ведущие исследовательские центры России, Германии, Швейцарии, США и в другие страны. Такие пучки используются в большинстве проектов термоядерных установок будущего. (1)

21 сентября 2018 - Для осуществления термоядерной реакции необходимо нагреть водородную плазму до температуры в сотни миллионов градусов. Наиболее эффективным методом нагрева является инжекция пучка быстрых атомов. В настоящее время подобная технология испытывается на нескольких крупных термоядерных установках в Европе и Японии и является наиболее перспективной для применения в термоядерной энергетике будущего. (1) https://ria.ru/science/20180913/1528457912.html

19 июля 2018 - Пилообразные колебания температуры и плотности плазмы, которые периодически происходят в термоядерных реакторах, могут вступать во взаимодействие с другими факторами нестабильности и становиться причиной прекращения реакции. Ученые из Принстонской лаборатория плазменной физики разобрались в этом механизме, который они назвали «пульсацией магнитного потока». Физик Изабель Кребс вместе с двумя коллегами провела компьютерное моделирование этого процесса и описала механизм пульсации магнитного потока в журнале Physics of Plasmas. Как показала компьютерная модель, такой механизм способен сам себя регулировать. Если пульсация потока становится слишком сильной, ток ядро плазмы остается «чуть ниже порога пилообразной нестабильности», говорит Кребс. Это позволяет удерживать температуру и плотность плазмы от колебаний вверх и вниз. Гибридный сценарий может пригодиться для предотвращения этих перепадов во время будущих масштабных экспериментов в международном термоядерном реакторе ITER, считают ученые. https://m.hightech.plus/2018/07/18/otkrit-mehanizm-stabilizacii-termoyad...

11 июня 2018 - Термоядерный реактор частной британской компании Tokamak Energy, основанной специалистами из Национальной лаборатории синтеза, той самой, где создали самый мощный в мире токамак JET, впервые разогрел плазму до температуры 15 миллионов градусов Цельсия. «Достижение отметки в 15 млн градусов — это очередная веха в прогрессе Tokamak Energy и еще одно подтверждение эффективности нашего подхода. Наша цель — сделать термоядерную энергию коммерческой реальностью к 2030 году. Мы видим этот путь как череду инженерных задач, требующих дополнительных инвестиций для их выполнения», — заявил глава компании Джонатан Карлинг. Хотя 15 млн градусов действительно являются важным достижением на этом пути, до заветных 100 млн градусов, превращающих термоядерный мини-реактор в искусственную звезду, еще далеко, пишет Engineer. ST40 — это третий реактор в 5-этапном плане, который, по мнению Карлинга, приведет к возможности коммерциализации термоядерной энергетики к концу следующего десятилетия. Первый запуск этого реактора состоялся в апреле прошлого года. Достигнуть такого успеха на сферическом термоядерном реакторе ST40, новейшем в ряду компактных токамаков компании, удалось благодаря технологии merging compression: кольца плазмы сталкиваются и меняют магнитные поля в плазме — процесс, получивший название магнитного перезамыкания. Для этого требуется пропустить через внутренние катушки сильный электрический ток в несколько тысяч ампер в секунду. https://m.hightech.plus/2018/06/07/mini-reaktor-tokamak-energy-vpervie-r...

11 апреля 2018 - Почетный президент «Курчатовского института» академик Российской академии наук Евгений Велихов: «Мы посчитали, что если удастся преодолеть сегодняшние геополитические неприятности, то и Россия, и каждый из партнеров по проекту ITER способны примерно к 2030–2035 годам построить у себя демонстрационный завод на базе гибридного реактора по производству ядерного топлива», — полагает ученый. «Мы готовы к сотрудничеству с коллегами со всего мира. Если же по каким-то причинам этого сделать не удастся, уверен, мы и сами вместе с приблизительно сотней отечественных организаций в состоянии разработать гибридный термоядерный реактор», — отметил Велихов.  Гибридный реактор, заявляет академик, представляет собой «комбинацию термоядерной и ядерной энергетики».   https://lenta.ru/news/2018/04/11/iter/ 

13 марта 2018 - Проект термоядерного реактора в ближайшие 15 лет должны реализовать физики из Массачусетского технологического института совместно с сотрудниками компании Commonwealth Fusion Systems. Как сообщает издание Popular Mechanics, экспериментальный проект называется Sparc, для него изготовлена тороидальная камера, которая при помощи магнитов из особых сплавов сможет удерживать сверхгорячую плазму. Spark должен будет генерировать 100 мегаватт тепловой энергии. Если эксперимент будет успешным, в планах у учёных — построить в два раза более мощный реактор. https://life.ru/t/новости/1097167/amierikanskiie_fiziki_postroiat_rieaktor_rabotaiushchii_na_enierghii_zviozd

08 мая 2017 - Первый запуск показал, на что способен термоядерный реактор ST40, построенный Tokamak Energy. Согласно источнику, запуск планировался как проверка возможностей реактора. Теперь Tokamak Energy установит полный комплект магнитных катушек в реактор для достижения температуры для термоядерных реакций. «Сегодня – важный день для термоядерной энергетики Великобритании и всего мира. Мы изобрели первый в мире управляемый термоядерный реактор. ST-40 – машина, которая покажет, что температуры термоядерных реакций возможны и не требуют больших затрат. Термоядерная энергия будет доступна через годы, а не через десятки лет», – сказал Дэвид Кингхэм, генеральный директор Tokamak Energyhttps://futurist.ru/news/3387-britanskiy-termoyaderniy-reaktor-sgeneriro...

30 ноября 2016 - Исследователи из Министерства энергетики США и Принстонского университета разработали новую теорию плазмы, которая может помочь ученым понять природу и обуздать мощь солнечных вспышек и термоядерных реакций. Большинство исследований по вопросу управляемой термоядерной реакции сводится к строительству реакторов с «постоянным магнитным полем», использующих мощные магнитные поля, благодаря которым происходит управляемый синтез более тяжелых атомных ядер из более легких. Однако основным недостатком подобного метода является то, что создаваемая в рамках этого процесса плазма в свою очередь сама создает новые магнитные поля, привносящие настоящий хаос в процесс. Сама плазма (ионизованный квазинейтральный газ) содержит заряженные частицы, генерирующие магнитные поля, которые в свою очередь могут разрывать уже имеющиеся внутри реактора поля. Этот процесс называется магнитным перезамыканием и является причиной, например, тех же солнечных вспышек, всплесков космических лучей и полярных сияний на Земле. Принятые на данный момент теории не могут объяснить, почему это перезамыкание происходит настолько быстро, что фактически нарушает законы известной нам физики. Магнитное перезамыкание является «ахиллесовой пятой», например, токамаков (тороидальных камер с магнитными катушками). Когда внутри таких реакторов происходит перезамыкание, в точке соприкосновения линий магнитного поля образуются двумерные «магнитные островки», в которых концентрируется большой объем энергии поля. Проблема заключается в том, что когда созданные в реакторе поля резко изменяются плазмой, они могут разрушать внешние поля, которые удерживают плазму в нужном состоянии и положении, что в свою очередь снижает мощность, необходимую для поддержания реакции.
 
Прогноз создан: 9 августа 2016 - Ученые Института ядерной физики (ИЯФ) добились устойчивого нагрева плазмы до температуры в десять миллионов градусов по Цельсию, сообщил журналистам замдиректора института по научной работе Александр Иванов. Иванов отметил, что специалисты института работают над проектом термоядерного реактора на основе открытой ловушки, который может быть создан в ближайшие 20 лет и должен стать альтернативой международного термоядерного экспериментального реактора (ИТЭР). Ученые предполагают, что в последующих экспериментах температура плазмы существенно вырастет, при этом минимальный показатель, требуемый для создания термоядерного реактора, уже превышен.  http://ria.ru/science/20160809/1473904448.html#ixzz4Gpuz5Jxq
 
4 декабря 2018
User Image4teller(85)%
Физики из Великобритании объявили о том, что нашли способ охладить раскаленную до миллиона градусов плазму с помощью специальной установки. С ее помощью ученые надеются запустить первый реактор термоядерного синтеза уже к 2025 году. Одним из самых перспективных подходов к ядерной энергетике является тип реактора, называемый токамак — он использует мощные магнитные поля для улавливания сверхнагретой плазмы внутри камеры в форме тора (проще говоря — полого бублика). Одним из основных препятствий при разработке токамака является тот факт, что плазма разогревается до колоссальных температур, доходящих до миллионов градусов Цельсия. Такого нагрева, к примеру, достигает корона Солнца. Но теперь ситуация может измениться к лучшему: ученые из Великобритании уверяют, что они нашли безопасный способ отвести это тепло. Новая система, разработанная инженерами и физиками-ядерщиками, использует проверенную временем методику: она увеличивает путь, который плазма проходит по токамаку, тем самым значительно охлаждая ее. После этого плазма вступает в контакт в так называемой «жертвенной стеной» — специальным блоком, состав которого пока не разглашается. Известно лишь то, он постепенно разрушается под воздействием высоких температур, так что каждые несколько лет его придется заменять. Исследователи надеются на то, что первое испытание новой системы пройдет на экспериментальном реакторе ITER во Франции. Международная команда, работающая над постройкой реактора (запуск которого запланирован на 2025 год) надеется, что это будет первый в истории реактор, производящий чистую энергию — что станет первым шагом к электростанциям, работающим на энергии термоядерного синтеза.
14 ноября 2018
User Image4teller(85)%
С помощью экспериментального продвинутого сверхпроводящего токамака (EAST), который называют китайским «искусственным солнцем», физики смогли разогреть плазму до 100 миллионов градусов Цельсия (что в 6 раз выше температуры ядра нашей звезды) и достигнуть мощности нагрева в 10 МВт. В рамках этого эксперимента ученые получили показатели, приближающиеся к физическим условиям необходимым для работы реактора термоядерного синтеза в стабильном режиме. Эксперимент проводился с помощью первого в мире сверхпроводящего токамака с некруглым поперечным сечением. Его разработкой и сборкой занимались ученые из Института физики плазмы при Академии наук Китая. В опубликованном пресс-релизе института говорится, что полученные результаты оказались близки к удовлетворению физических условий, необходимых для создания будущего стационарного термоядерного реактора. Столкновение двух ядер водорода создает огромный выброс энергии. Этот процесс называется термоядерной реакцией. С помощью него Солнце и другие звезды производят свет и тепло. Если ученые смогут обуздать эту энергию, то человечество получит доступ практически бесконечному источнику чистой энергии. Китайскую установку назвали искусственным солнцем из-за того, что оно создает необходимые условия для ядерного синтеза путем слияния ядер водорода, как в ядрах звезд. Однако в отличие от небесных светил, в токамаке используется не обычный водород, а его изотопы — дейтерий и тритий, — которые извлекают из морской воды. Успешный эксперимент EAST стал важным шагом на пути создания Международного термоядерного экспериментального реактора (ITER). В разработке последнего участвуют 35 стран, включая Россию, Китай и США. Кроме того, полученные в ходе испытаний параметры также важны для строительства проекта китайского экспериментального реактора термоядерного синтеза (CFETR).
14 ноября 2018
User Image4teller(85)%
Experimental Advanced Superconducting Tokamak (EAST), nicknamed Chinese artificial sun, has achieved over 100 million degrees electron temperature in the core plasma in its 2018 four-month-long experiment campaign. Collaborating with domestic and international colleagues, EAST team in Hefei Institutes of Physical Science, Chinese Academy of Sciences (CASHIPS) made significant progress along the China’s roadmap towards tokamak based fusion energy production. By effectively integration and synergy of four kinds of heating power, namely, lower hybrid wave heating, electron cyclotron wave heating, ion cyclotron resonance heating and neutral beam ion heating, the plasma current density profile was optimized. The power injection exceeded 10MW, and plasma stored energy boosted to 300 kJ after scientists optimized the coupling of different heating techniques, and utilized advanced plasma control, theory/simulation prediction. The electron temperature of the core plasma increased beyond 100 million degrees. Scientists carried out the experiments on plasma equilibrium and instability, confinement and transport, plasma-wall interaction and energetic particle physics to demonstrate the long time scale steady-state H-mode operation with good control of impurity, core/edge MHD stability, heat exhaust using an ITER-like tungsten divertor. With the ITER-like operation conditions such as radio frequency wave dominant heating, lower torque, water-cooling tungsten divertor, EAST achieved fully non-inductive steady-state scenario with high confinement, high density and high energy confinement enhanced factor. Meanwhile, to resolve the particle and power exhaust which is of crucial importance for high performance steady state operation, EAST team has employed many techniques in controlling the edge localized modes and tungsten impurity in ITER-like operation conditions, along with active feedback control of divertor heat load. The operation scenarios of steady-state high performance H-mode and reactor-level electron temperature over 100 million degrees on EAST offer unique contributions toward ITER, Chinese Fusion Engineering Test Reactor (CFETR) and DEMO. These results provide key data for validation of heat exhaust, transport and current drive models, and enhance confidence in the fusion performance predictions for CFETR. At present, CFETR physics design focuses on optimization of a third-evolution machine with large radium at 7 m, minor radium 2 m, toroildal magnet field at 6.5-7 Tesla and plasma current 13 MA. In support of the engineering development of CFETR and a future DEMO, a new National Mega Science Project -- Comprehensive Research Facility will be launched at the end of this year. This new project will advance the development of tritium blanket test modules, superconducting technology, reactor relevant heating and current drive actuators and sources, and divertor materials. EAST is the first fully superconducting tokamak with non-circular cross section in the world, designed and constructed by China aiming at key science issues for the application of fusion power. Since its virgin operation in 2006, EAST has become a fully open test facility for world fusion community to conduct steady-state operation and ITER-related physics researches. (十日内)
Существующие похожие прогнозы
Примерно
20 декабря 2019
прогноз сбудется
Техника и наука
За счет высокоинтенсивного светового излучения устройство будет способно временно ослепить противника и создать условия для его нейтрализации. Технология уже используется на кораблях...
48%
52%
(+3)
(+1)
Примерно
31 марта 2020
прогноз сбудется
Техника и наука
Stan – необычный робот, значительно облегчающий процесс парковки, разработанный инженерами французской компании Stanley Robotics
52%
48%
(+1)
Когда-нибудь
прогноз сбудется
Техника и наука
Российский УАЗ и компания «Россети» договорились о сотрудничестве при работе над новыми типами автомобилей, включая электрокары.
34%
66%
Примерно
31 декабря 2028
прогноз сбудется
Техника и наука
Графен представляет собой материал с высокой механической жесткостью, достигающей одного терапаскаля, и относительно небольшой плотностью
56%
44%
Примерно
31 декабря 2023
прогноз сбудется
Техника и наука
КамАЗ и НАМИ представили беспилотный электробус ШАТЛ
61%
39%
Когда-нибудь
прогноз сбудется
Техника и наука
Такая технология рассматривалась еще в 60-х годах, но постепенно становится все более и более реальной...
58%
42%
(+1)
Примерно
1 января 2021
прогноз сбудется
Техника и наука
Специалисты корпорации Loсkheed Martin представили концепт скафандра, который поможет исследователям изучить спутники Марса
53%
47%
(+1)
Примерно
5 января 2025
прогноз сбудется
Техника и наука
Группа исследователей разработала новый тип синтетических мягких мышц, производить которые можно с помощью технологии 3D-печати
53%
47%
Примерно
18 ноября 2023
прогноз сбудется
Техника и наука
Бот Philips Research может распознавать эмоциональную окраску речевых или текстовых сообщений пациента, адекватно на нее реагировать и помогать человеку избавиться от вредной привычки
59%
41%
(+3)
Примерно
30 января 2021
прогноз сбудется
Техника и наука
ФСК ЕЭС завершила испытания самой длинной в мире кабельной линии на основе высокотемпературных сверхпроводников и планирует в 2020 году соединить ею две подстанции
48%
52%
(+1)

Политика:    2016    2017    2018    2019    2020    2021    2022    2023    2024    2025    2026    2027    2028    2029    2030-е    2040-е    2050-е    2060-е    Избранное 

Технологии:    2016    2017    2018    2019    2020    2021    2022    2023    2024    2025    2026    2027    2028    2029    2030-е    2040-е    2050-е    2060-е    Избранное 

Экономика:      2016    2017    2018    2019    2020    2021    2022    2023    2024    2025    2026    2027    2028    2029    2030-е    2040-е    2050-е    2060-е    Избранное 

Общество:      2016    2017    2018    2019    2020    2021    2022    2023    2024    2025    2026    2027    2028    2029    2030-е    2040-е    2050-е    2060-е    Избранное 

Медицина:        2016    2017    2018    2019    2020    2021    2022    2023    2024    2025    2026    2027    2028    2029    2030-е    2040-е    2050-е    2060-е    Избранное 

 

С помощью поиска можно найти прогнозы по любым темам